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Wavelet-based Inference for Long-memory Processes
Alex C. Gonzaga' and Daniel C.%Bonzo2

ABSTRACT

A long-memory process may be characterized by its corresponding wavelet variance, an analogue of the
spectrum, which decomposes the variance of a process with respect to 'a variable called scale. In this paper, we
derive the variance of the logarithm of the maximal-overlap estimator — a relatively efficient estimator of the
wavelet variance. We use this to obtain a weighted-least-square estimator and a test for the long-memory
parameter. We show that this weighted-least-square estimator is more 'statistically efficient than the one based
on the wavelet-transform estimator of the wavelet variance. Finally, 'we apply these estimators and tests to
determine the long-memory parameter of the Nile river data, a weII-knowr? long-memory process.

KEYWORDS: Long-memory process, ARFIMA(p.d,q) process, wavejets, wavelet variance, maximal-overlap
estimator i

1. INTRODUCTION .

In various areas of human endeavor, it is not uncommon to encounter phenomena that are
subject to long-range dependence (LRD) or long memory. For instance, the minimum water
level of the Nile river is characterized by its slowly decaying autocorrelations. Many
hydrological, geophysical, climatological and economic phéTnomena have likewise exhibited
LRD. See, e.g. Beran (1994) or Granger (1966). Studies on telecommunications traffic (e.g.
Abry and Veitch, 1997), self-similar processes and fractals (Abry, Veitch and Flandrin,
1997), and unstable processes (Chan and Terrin, 1995) have also involved an analysis of long
memory behavior. |

Several approaches have been introduced for detection, estimation and testing for long-
memory. These include the R/S statistic, variogram, periodogram-based least square
estimator, maximum likelihood estimators, and M-estimators, (Beran, 1994). Recently, Jensen
(1995), introduced wavelet-based ordinary least-square estimator of the long-memory
parameter. On the other hand, Beran (1992) proposed a test for long-memory processes based
on the spectral density of the process. In this paper, we present a weighted-least-square
estimator of the long-memory parameter based on the maximal-overlap estimator and
wavelet-transform estimator, which are known to be unbiased and consistent estimators of the
wavelet variance. !

The organization of this paper is as follows. We present an introduction of wavelets, wavelet
variance and long-memory process in Sections 2, 3 and 4, respectively. Our main results and
applications are given in Sections 5 and 6. We give some concluding remarks in Section 7.

2. Wavelets ;

A wavelet is defined by

Was() = lal™” wia' (1-b)
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where g, be R (a=0). The function w(t) eL*(R) is often referred to as the mother wavelet and
must satisfy the admissibility condition given by R 1 ¥w)Plw" dw < oo, where ¥w) is the
Fourier transform of y?). This admissibility condition is required so that wavelet transforms
become invertible. If y(¥) has sufficient decay, then this condition is equivalent to

)=/ w(1) di =

This means that the positive and negative areas ‘under’ the curve of y(t) must cancel out.
Moreover, since the Fourier transform is zero at the origin and the spectrum decays at high
frequencies, the wavelet has a bandpass behavior. It is often referred to as a bandpass filter
function.

Example 1. (Haar Wavelet) Historically, the Haar wavelet is the earliest wavelet. It
represents a piecewise constant function given by

1 0<tg1/2
w(t)=|-1 1/2<t<1
0 otherwise

]

I

Figure 1. Haar Wavelet.

The continuous wavelet transform of x(1) L’ at the time-scale location (b,a) is defined by the
inner product

<x, yus > = lal"? [ xW wia’ [1-b]) dt.

By introducing an appropriate constant ¢>0 (in frequency unit selected by the choice of
w(1)), we have the following mapping from scale « to frequency w

fla) = c/a=w.

One method to determine this constant ¢ is to take the inverse wavelet transform (IWT) of a
function with a single but unknown frequency and to match this value with scale axis.

The wavelet transforms, < x, ., >, satisfy the property
N<x wos >1Pdb = [ix(n) du.

Hence, they completely characterize x(1) in the L’ sense. Moreover, x(f) may be
reconstructed by the inverse transform given by
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x(t) =C,' ] a? <x, 0> Wap da db

where C,, =2z [ |’ |8 de < o The admissibility condition| fn//(t) dr=0 is implied by
Cw < wif y(t) has sufficient decay. !

The discrete wavelet transform (DWT) of x(t) € L°(R) is the doubly indexed sequence
{d;«;j ke Z}, such that

di=2" fhx(t) w2 (t-k/2)) dr.

Note that dj; is just the value of the continuous wavelet transform of x(1) at the time-scale
location (k/2, 1/2) or at the time-frequency location (&2, c2), where ¢>0 is a constant that
depends on the choice of yf?). If the time interval is normallzed to the unit interval, the
support of the wavelet becomes [(n-1)2™", n2™] so that the ‘wavelet covers the entire
time series. Hence, for a scaling parameter, m, the translation parameter has values n =
1,2,3,...2"!. Thus, for a time series of length N = 2", the discrete Wavelet transform (wavelet
coefﬁcnents) are

{dpn:m € {12,...r}, n(m) € {1,2,..2""} }.

The discrete wavelet transform (DWT) has a corresponding fast algorithm for signal
decomposition and - reconstruction, which is efficient for Jboth computation and
implementation on computers and processors. This algorithm is faster than the so-called Fast
Fourier Transform (FFT) used in computing the discrete Fourier transform of long time
series. Moreover, the information contained in the DWT is sufﬁcie:nt to determine the signal
uniquely. !

3. Wavelet Variance

i
The wavelet variance v y(2’) of a stochastic process Y,(t=0, £I....) decomposes var(Y,) with

respect to scale 4 = 2, that is, |

var(Y) = Z vy(2’
This is similar to the property of the spectrum of Y,, Ry, that satlsf'es
var(Y,) = [1/ _Ry(w)aw.

Let

1/1— Zhl/l

represent the output obtained from filtering Y, using the wavelet ﬁlter h; ; of scale A, where
L, = (2A-1)(L-1)+1, and L is the length of the wavelet filter h.l (Daubechies, 1992). The
wavelet variance for the process Y, at scale 4 is defined by

2 ( 2,{)
Vy(’l)_ 21
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The wavelet filter h; , for scale A can be regarded as an approximation to a bandpass filter

with passband given by 1/41 < |w| < 1/22 (Percival, 1995). Hence, the wavelet variance can
be approximated by

/
V() =2 f / ijY(w Jaw.

This approximation improves as the length of the wavelet filter increases.

Suppose that (Y, Y, ...,Yn) is a portion of the realization of the process Y,. The maximal-
overlap estimator of the wavelet variance (Percival, 1995) is defined by

Ay 1 i 5
vy (A) = —— ,
2aN,, G Wi
where N, =N -L, +1. The wavelet-transform estimator (Percival, 1995) is given by

1 [N/724] R
2lN"A ,=f§2'{ﬁVv’j

Vr,,{ = W21_/L and NVA = [%J _[é_jll_*#

Vit (A) =

where

Percival (1995) has shown that the maximal-overlap estimator is more statistically efficient
than the wavelet-transform estimator. In fact, for long-memory processes the asymptotic
relative efficiency of the wavelet-transform estimator with respect to the maximal-overlap
estimator is close to 0.5 for small values of L. Nevertheless, the former is more
computationally efficient since it could be obtained from the discrete wavelet transform of
the process. Moreover, both of these are unbiased and consistent estimators of the wavelet
variance.

The following theorem will be used later to derive a weighted-least-square estimator of the
long-memory parameter based on the maximal-overlap estimator.

Theorem 3.1(Percival, 1995) Let R, be the spectrum of W, ,. If R, is finitely integrable and

strictly positive almost everywhere, then the maximal-overlap estimator +°(1) is

asymptotically normally distributed with mean viA) and large sample variance
/2

Ay, (22N, ), where N, =N-L, +l, 4, = [RL(Ndf, and
i -i/2

L, =Q2A-1)(L-1)+1.
4. Long-memory Process

An ARMA process {X;} is usually referred to as a short memory process since the
autocorrelation between X, and X.4x decreases rapidly at an exponential rate to zero as k —
o, that is, p(k) ~Cr* k=12 where C>0 and 0<r<I. Brockwell (1987) defines a long-
memory process as a stationary process for which p(k) ~ CK**! as k — ag where C>0 and d <
0.5. In this case, the autocorrelations decay to zero slowly at a hyperbolic rate. For our
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purpose, it d < 0 and Z| pk)| < oo we call /X;} an mle;med:ate -memory process. It is a
k=-mn

long memory process when 0 < d < 0.5 and Z| pk)|=
k=-n

The definition of long-range dependence is an asymptotic one. It tells us that the
autocorrelations decrease slowly at a hyperbolic rate as the'lag goes to infinity and not the
size of each autocorrelation. Hence, a time series with arbitrarily small autocorrelations that
tend to zero very slowly may be a long-memory process Thus, to detect long-range
dependence all autocorrelations must be considered snnultaneously instead of taking them
separately. This requires a lengthy time series for detection lof long-range dependence to be
reliable. Nevertheless, unlike short-memory processes, lon‘g-range dependence allows for
more reliable and precise prediction of remote future values ofthe series.

Long-memory processes are often modeled by means of 'the autoregressive fractionally
mtegm/ea’ moving average (ARFIMA) process. (For our purpose. we say that a stochastic
process is stationary if it is covariance stationary.) An ARF[A/M(p dq) process !X, is a
stationary process such that }

@(B) (1-B)' X, = OB)s (1)

where & is white noise , B is the backshift opé¢rator such that BX, = X,
O(B)=1+¢;B+..+¢,B’ is the autoregressive operator, O(B) 3 /1+6,B+..+6,B% is the moving
average operator, and  (/-B)? is the fractional difference ope;rator. Ifde(0,0.5), (X))} is long-
memory process (nonsummable autocorrelations). If de(-0.5.0), [X,] is an intermediate-
memory process (summable -autocorrelations). If ¢ = (), equation (I) defines the usual
ARMA(p.q), which is a short-memory process. If d is an mteger (1-B) becomes the usual
ditferencing operator in Box-Jenkins models.

Clearly. /X! is white noise process if d = p = ¢ = . The!upper bound d<0.5 is needed,
because for d > (.5, the process is not stationary. However. the gase d>0.5 can be reduced to
the case -0.5<d<0.5 by taking appropriate integer dlﬂc:rcncnluD For instance, if equation (1)
holds with ¢ = 1.4, then the differenced process (/-B) W, is the stationary solution of
equation (1) with d=104and W, = (1-B)X,. The panaméter d determines the long-term
behavior, whereas p, q, and the corresponding parameters '¢(B) and y(B) allow for more
flexible modeling of short-range behavior. .

A special case of ARFIMA(p.d.q) is the fractionally intcgrated I(d) process or
ARFIMA(0,d,0). Note that an ARFIMA(p.d.q) is obtamed by passing a fractional I(d)’
process through an ARMA(p,q) filter, that is,

= oB)" UB)X,

where X, is a fractional J(d). Hence. the long-term behaviori of an ARFIMA(p,d.q) process
may be characterized by its corresponding fractional /(d) process.

|
The spectral density of the ARFIMA(p.d.q) process X is given by

Row) = {1-¢" Ryraia(w), |
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where R4rma(w) is the spectral density of ARMA(p.q) process given by
\P(eiw )\“

a,’
R ynis (W) = —
27|D(™)| -

The behavior of the spectral density of X; at the origin is given by

RW) ~ Ragaaa(0) ||
Long-range dependence occurs for 0 < d < %.
S. Main Results

In this section, we derive the variance of the logarithm of the maximal-overlap estimator of
the wavelet variance. We also present a weighted least square estimator and a test for the
long-memory parameter d.

In the following lemma, we derive the variance of the logarithm of the maximal-overlap
estimator of the wavelet variance.

Lemma 5.1. Let v?(A)be the maximal-overlap estimator of the wavelet variance. If the
spectrum of W,; R,, is finitely integrable and strictly positive almost everywhere, and

log,(V? (M) is uniformly integrable, then

i) log, ¥*())—>N(log, v’ (). 4, log; /24N, v* (1)),

i) var{logy(V?(X) }=e(p/2)/In2,

where N, =N-L,+1, 4, = .[R";‘: (f)df. L,=(2A-1)(L-1)+1, and ¢() is the
trigamma function.

Proof.

i) Let v¥(1) be the maximal overlap estimator of the wavelet variance. Since R, is finitely
integrable and strictly positive almost everywhere, from Theorem 3.1,

‘32(&) ;’)N(vz(/l),A"_} /22,2 N“.j ) .
Now

fixy =828,
X

exists and nonzero for x>0. Since v>(1)>0), then by the Delta Method
log, v*(A)—> N(log, v’ (). 4, log;e/2XN  v*(4)).
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ii) From Percival(1995),
sv3(A)
vi(4)

is approximately equal in distribution to a chi-square random vanable with s degrees of
freedom for large N, where

s=max{L 42N, v (A)/ 4, } |

Since loga(V? (L)} is uniformly integrable, then for sufficiently large N
Var(log;v* (1)) = Var (log; \32(/1) + logss — log; v (1)) ‘

= Var (Iog; ))) = Var (log:X),

where X is a chi-square random varlable with s degrees ot freedom. The distribution of X'is a
member of the exponential family. Its probability density function can; be written in canonical
form as

F(x)=expypinx - 4(p)},
where A(1)= In({n)2"), and n=s/2. Hence,
Var(ing = 24 _TOTDTON _ g2 gy

on’ [rony’
where ¢(.) is the trigamma function. Therefore,

var {logy(V3( 1)} = ¢(s/2)/In2 QED.

In certain practical problems that R, is bandlimited and flat over its nominal passband, then
s= max{l,N“,A /24 , which is a function of A (Percival. 1995).

In the following lemma, we show that the logarithms of the ma\imall -overlap estimators are
uncorrelated. From Beran (1994) we use the fact that if the covarlance\between X; and X is

(k). then the corresponding covariance for the mth Hermite polynomlal is given by
Yul(k) = cov (Hu(X)), Hu(Xjs)) = m! ¥"(k). (2)

Lemma 5.2. Under the assumptions of Theorem 3.1, let v*(1)be the maximal-overlap

estimator of the wavelet variance at scale A of an ARFIMA(de q) process, then if j
=k

cov (logyv?(2)), log,v2(2*)) ~ 0.

Proof. |

Suppose that we have a time series of length N = 2* that can be considered as a realization of
a portion (Y, Y»,...,Yy) of the ARFIMA(p.d,q) process Y, with mean zéro. Hence, E(W, ;) = 0.
The maximal-overlap estimator of the wavelet variance is given by
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2 2
PA)=3 L Sw
W/1 t=L,
where N, =N-L,+1, A, = IRjA(f)df, L, =QA-1)(L-1)+1.(Percival, 1995).

Hence,

Lyy=1 Ly,-

oVl W, N = EW, W, =1 Y 3 by, RU-s+m=n),

m=0 n=0

where R(k) is the autocovariance function of ¥, at lag k. Thus,

L=l Ly;~1 172
P2a(1=s+m-n)
I COV(VVI A4 W\ Ay )I z hm,/l, hn./l: Ie dFY (V)
m=0  n=0 ~1/2

172 1,,-1

=| [(Xhe™ X Zh,, €T IMETG (v)

-1/2 m=0 n=0

1/2

=| [l H, (=W H, @)™ | dF, (v)
-1/2
1/2

< [l H, (-1 H, )| dF, ),

-1/2

where H is the transfer function of h. From Percival (1995), the wavelet filter hy,, can be
regarded as an approximation to a bandpass filter with passband given by

| 1
— Jvjs—.
42 24

Hence, for large L, =(2A-1)(L-1)+1, the supports of H,() and H, () are
—I —] ) L,—]— and - , _ ] ] , l , respectively. Thus,
2/1 41 42, 24, 24, 44, 42, 24,

1/2
cov(#,, 7, )< [IH, (=W H, )| dF, (v) =

~1/2

if A;# A, Now,
cov(2, W2, )| = leov(#?, ~Lw2, -1)]

Since the second Hermite polynomial is Ha(x) = x>-1, from Equation(2) we have
cov(2, W) = 2lcov,, ., )1 = 0.

Hence,
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n n 1 I |
lcov (V3(3,).9° (1) | 5o S 3 leovwh W2 ) =0

1V, 2V, [

1

By Lemma 5.1, E(log;v*(A))’ < « Since log,X is a measurable functlon for X>0, from
Beran(1994), log,(X;) can be written as

1=l s=l;,

log2¥* (1) = G(Xy) = Z CH (X)),

k=m

where H, is the kth Hermite polynomlal and a,=<G,H>= E[G(x)Hk(x) ]. Since <H, H>=k!,
<H H,>=0 for k=r, and from Equation(2), we have

k=m r=m

lcov (log29* (A,), log2¥ (lz))l—lz Z L BIH, (X )H, (X I

< Z *k'ncov( (x.),&2<iz))!|]*=o

—Ill

for Ay A;. Let 4, =2 and A, = 2 Therefore, ifj =k

cov (log;v*(2)), log,v*(2%)) = 0.

The following theorem gives us the weighted-least-square estlmatOr of the long-memory
parameter d. !

Theorem 5.3. Let ¥; be an ARFIMA(p,d,q) process, where de(-]/é,I/Z). A wavelet-based
weighted-least—square estimator of the long-memory parameter d is given by

|
Zu,Jy, Zu y,)(zu 1) |
Zu,f —(Zu i)

where v2(27) is the maxnmal -overlap estimator of the wavelet varlance at scale 2, yi=log;
vi(2') vi= {0(s/2))", d() is the trigamma function and

Q)

Proof.

The spectral density of an ARFIMA(p,d,q) process ¥, at the origin is gilven by

!
!

R(W) ~ Rarma(0) ||

Hence, the wavelet variance of Y, is

vA(A) ~ CAZd—I'
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where C = 2f4pia(0) and -% < d < %.

Now, let

&= {logz \72(2j)- E(logz \72(2]))}v
and

y; = log; V*(2'),
where A =2 Clearly, by Lemma 5.1,
E(g) =0 and var(g) =~ ¢(s/2)/In2.

(Note that p is a function of j for 1 = 2.) By Lemma 5.2, the error terms & are approximately
uncorrelated with respect to scale. Hence, we have the regression equation

¥ =(2d-1)j +log:C+ &’ j=0.1.2.3,..j*
Let ,
vj= {¢(S/2)}-I, and u/, = .v’j

J*

2

i=0 .
Performing a weighted least squares fit between y; and j (Bickel and Doksum, 1977) with
weights u; yields the following estimator of the long-memory parameter d

[ J* J* J*
Zujjyj _(Z“jy./ )(Z”jj )
=0 0 )

= =
Z”jj i _(Z"‘.fj y
=0 Jj=0

Qo>
]
N | —

Q.E.D.

From the maximal-overlap estimator, the upper limit is N and the lower limit is
Ly=2A-1)(L-1)+1,

which is an increasing function of A. Hence, for A = 2/, the maximum possible value of j in
the summation is the largest integer satisfyingN - L, > 0.

This implies that

IPEAL AL
2L -2
Thus, the choice of j* should not exceed “_ Ing(sz—L;z):H-

Now, let

*The g; at least approximately satisfy E(g; ) = 0 and cov(g, g ) = 0, 1<i<j<k.(Bickel and Doksum(1977),
p.95)
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*
= uj-u; D uj
j=0

and

i j* 2
p=3ur (5.
=0 =0

Hence,

*
Zaiyi

/=0

g=1
2 B

+11.

j* j° j° ‘
Note that Z u; =1, then Z a;=0 and Zajj = B. The variance could be written as
j=0 |

=0
I
Z ay;

5 : roo j* :
Var d = var %FJFE = (2B)? {Zaj‘ var(y;)+ D a,a; cqv(y,,y/)}.
j=0 |

j=0 |

i j=0

By Lemma 5.2, cov(yiy;) = 0 for i=j. Hence,

Var d = (2B)” {lz a’ var(yj)}.
j=0

By Lemma 5.1, the large sample variance of y; is given by

. A, logie
Var(log, v (4)) = ———— :
: 2A°N,, v*(A) !

where A = 2. Hence, vard can be made arbitrarily small by small choibe of j* for large N.
Moreover, for large N, y; = (2d-1)j + log,C + ¢ satisfies the properties of a generalized
|

A

linear model. Hence, the resulting estimator d must be asymptotiga']ly unbiased for d.

However, consistency of d can only be assured if vard = o(l). Clearly, this is satisfied by
choosing a fixed and relatively small j*. Thus, the choice of j* provides'a trade-off between
bias and variance. '

!

The preceding weighted-least-square estimator allows us to estimate;: the long-memory
parameter d of an ARFIMA(p,d,q) process without the knowledge of‘lp and q. It could be
applied to any process that behaves as ARFIMA(p,d,q) at the pole. It may be expressed
directly in terms of the wavelet-transform estimator of the wavelet variartlce by replacing the
corresponding maximal-overlap estimator. The wavelet-transform estimator is more
computationally efficient but less statistically efficient than the maximal-overlap estimator
(Percival, 1995). |

(
The following theorem shows that the weighted-least-square estimator based on the maximal-
overlap estimator is more statistically efficient that the one based on the wavelet-transform
estimator. |

A A :
Theorem 5.4 Let dy and d, be the weighted-least-square estimators ?f the long-memory
parameter d based on maximal-overlap and wavelet-transform estimators of the wavelet
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variance, respectively. Under the assumptions of Theorem 3.1, the asymptotic relative
efficiency of c/}w with respect to (Alv satisfies

ARE(d y,d ) < ¢ < 1,
where j* Sllog{N tL-2

——) and c;« is an increasing function of j*.
2L-2 '
Proof.

From Lemma 5.1, y; is asymptotically normal. From Lemma 5.2, the y; are independent. Now,

we can write the estimator d; in the form

J*

A * (u','j _u‘j(zu.jj)) I
dy =3, 7 F?f‘ t-
j=0

2> u,j =20 u, )
=0

j=0

Hence, we have

Iy

d, #)N(d, vard, )
where

j*
a.y.
]=20 1 /+1
2

Var d w = var

J* I
= (2B)* {Za.i‘ var(y,)+ Za,.a., cov(y;, ¥, )}.
=0

i# j=0

/*
where Zajj =B. By Lemma 5.2, cov(yy;) = 0 for i=. Hence,
0

7=
n I
var d = (2B)” {Z a/ var(y, )} .
j=0
Thus,
I* a

i A
var d w= (2B)” (log e T :
w ( ) ( gz ){g 22‘/+IV4 (2J)NWZ,

Similarly,

d, —i'—)N(d, varc?V)
Thus, by Theorem 5.2.1 (Lehmann (1983), p.345), we obtain
$ aj Ay,
= lzN,,Vl v (1)
2 a;4,
P /IZNViv“(l)
where A = 2. From Percival (1995)

ARE(d w.d ,) =

>
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4y,
24, |
where ¢; is an increasing function of j < o0, and 2 = 2 . Hence,
i 2
5 oa;2c,4,

AoA 2/122N. (A
ARE(dW'dv)=_/0 ;,AV()

=Cj<1,

3 ajdy,
=0 AZNVA. vi(2)
Thus, for

i* < | log (N+L—2j
N 2\ 2L-2
we have

ARE(d y,d ) < cp < 1. ‘ QED.

In the following theorem, we derive an asymptotically uniformljy most powerful test for
testing H,: d <0 versus H;: d > 0. Note that if d< 0 the process has intermediate memory,

if d = 0 the process has short memory (ARMA(p,q)), and if dc—'(d. 1/2) the process has long
memory. :

Theorem 5.5. Let ¥, be a ARFIMA(p,d,q) process with de(-0.5,0|.5) under the assumptions

of Lemma 3.1. An asymptotically uniformly most powerful test for testing H,: d<0 versus
H/.' d>0 “
is given by

d(x) = {

1 d>k
0 otherwise

‘
t

j 2
~ j. n _I“ a A '
Wherek = Z(x "Var d , Zalj — B , and var d — (ZB)-Z (Iogi C){Z J Wy }
j=0

=0 22yt (2,/‘ )Nwz,
Proof. !

From the proof of Theorem 5.4, we have
d—s Nld,var 4)
where
J* a .2

) A
var d = (2B)? (log? e Y . ‘
( ) ( g2 ){,Z:: 22.I+| V“ (2’ )Nle,

PJ[L_—d—A> ZGJza,
|

\/Var d |

where Z; is the I-a quantile of the standard normal distribution. If d=0 we have

Po(c}>z,, Var&):a. |

Thus,

Hence, an asymptotically uniformly most powerful test for testinga H,: d<0 versus H;: d>0is
given by ‘
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1 d>k

#(x) = )
0 otherwise
i* a’d
where k = Z_«Vard, Var d = (2B? (logle) Z T , and

G2V @,

J*
> a,j=B.QED.
j=0

The preceding test may be expressed directly in terms of the wavelet-transform estimator of
the wavelet variance, which is more computationally efficient but less statistically efficient
than the maximal-overlap estimator.

6. Applications

We apply the wavelet-transform estimator and maximal-overlap estimator of the wavelet
variance in estimating and testing for the long memory parameter of the Nile river data —
yearly minimum water levels of the Nile for the years 622-1133 A.D. measured at the Roda
Gauge near Cairo. This is a well-known example of a long-memory process, which is usually
used to assess the performance of estimators of the long-memory parameter.

We first compute the weighted-least-square estimator of d using the wavelet-transform
estimator of the wavelet variance, which could be obtained directly from the discrete wavelet
transform of the process. Using WAVELAB 0.701, a library of MATLAB routines for
wavelet analysis, we compute the wavelet coefficients at different scales after subtracting the
mean. The corresponding weights are computed using the polygamma function of
MATHEMATICA. Hence, the weighted-least-square estimator of the long-memory
parameter based on the wavelet-transform estimator of the wavelet variance for N=2° is

A

dy =0.322786,
which shows that the Nile river data, indeed, represents a long-memory process.

We also compute the weighted-least-square estimator of d using the maximal-overlap
estimator of the wavelet variance. We use the fact that since
L,-1

Wia= zhi,lYt—i ,
i=0

the spectral density of W, ; satisfies
Ry (A) = H(A) |2 Ry, (4).

Hence, given a realization of the process Y, and the transfer function H(A) of the wavelet

filters, the values of W, , in the definition of maximal-overlap estimator may be computed by
taking the inverse transform of R,. For N = 2°, the weighted-least-square estimator of the
long-memory parameter d based on the maximal-overlap estimator of the wavelet variance is

dw = 0310858,

which shows that the Nile river data, indeed, represents a long-memory process.
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We summarize the values of d for the two estimators of the wavelet variance, and for N =
2”and N = 2% as follows: |
N=2  N=2
d, (wavelet transform) 0.322786  '0.254552
d,, (maximal overlap) 0.310858 ! 1 0.29227

Clearly, the value of d for N = 2% based on the maximal- overlap estimator is much closer to

its value at N=2° than d based on the wavelet-transform,estlmator. This demonstrates the
asymptotic relative efficiency of the two estimators in Theor'em 5.4.

For the testing procedure in Theorem 5.5, the value of & fo'r a =0.05 is 0.239589. Thus, for
both estimates of d, we reject the null hypothesis and conclude that the Nile data represents a

long-memory process. |
!

7. Concluding Remarks '

The weighted-least-square estimator based on the maximal-c?verlap estimator of the wavelet
variance is shown to be more statistically efficient, but less computationally efficient, than
the one based on the wavelet-transform estimator. An algorlthm may be designed to compute
the maximal-overlap estimator without applying spectral analysns Moreover, simulations of
long-memory processes may implemented to fully assess the efficiency of the estimator and
test in making inferences about the long-memory parameter. |
The preceding procedures have the advantage of being abie to make inferences about d
without the knowledge of p and q. However, just like: other least-square estimation
procedures on d, we just exploited the simple form of the pole of the spectral density at the
origin. They do not tell us about the short-term properties of the process.

|
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