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A long-memory process may be characterized by its corresponding! wavelet variance, an analogue of the
spectrum, which decomposes the variance of a process with respect to :a variable called scale. In this paper, we
derive the variance of the logarithm of the maximal-overlap estimator, - a relatively efficient estimator of the
wavelet variance. We use this to obtain a weighted-least-square estimator and a test for the long-memory
parameter. We show that this weighted-least-square estimator is more :statistically efficient than the one based
on the wavelet-transform estimator of the wavelet variance. Finally, Iwe apply these estimators and tests to
determinethe long-memoryparameterof the Nile river data, a well-known long-memory process.
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1. INTRODUCTION ,

In various areas of human endeavor, it is not uncommon to encounter phenomena that are
subject to long-range dependence (LRD) or long memory. for instance, the minimum water
level of the Nile river is characterized by its slowly decaying autocorrelations. Many
hydrological, geophysical, climatological and economic phenomena have likewise exhibited
LRD. See, e.g. Beran (1994) or Granger (1966). Studies ori, telecommunications traffic (e.g.
Abry and Veitch, 1997), self-similar processes and fractals (Abry, Veitch and Flandrin,
1997), and unstable processes (Chan and Terrin, 1995) have also involved an analysis of long
memory behavior. I

Several approaches have been introduced for detection, estimation and testing for long­
memory. These include the R/S statistic, variogram, periodogram-based least square
estimator, maximum likelihood estimators, and M-estimators: (Beran, 1994). Recently, Jensen
(1995), introduced wavelet-based ordinary least-square estimator of the long-memory
parameter. On the other hand, Beran (1992) proposed a test (or long-memory processes based
on the spectral density of the process. In this paper, we present a weighted-least-square
estimator of the long-memory parameter based on the maximal-overlap estimator and
wavelet-transform estimator, which are known to be unbiasedand consistent estimators of the
wavelet variance. :

The organization of this paper is as follows. We present an introduction of wavelets, wavelet
variance and long-memory process in Sections 2, 3 and 4, respectively. Our main results and
applications are given in Sections 5 and 6. We give some concluding remarks in Section 7.

I

2. Wavelets

A wavelet is defined by
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where a, bE R (a:;t!:()). The function lj/(t)EL2(R) lis often referred to as the mother wavelet and
must satisfy the admissibility condition given by k IIj/(w)12Iw( dw < Go, where Ij/(w) is the
Fourier transform of lj/(t). This admissibility condition is required so that wavelet transforms
become invertible. If lj/(t) has sufficient decay, then this condition is equivalent to

IJ'(O) =h lj/(t) dt = O.

This means that the positive and negative areas 'under' the curve of \jl(t) must cancel out.
Moreover, since the Fourier transform is zero at the origin and the spectrum decays at high
frequencies, the wavelet has a bandpass behavior. It is often referred to as a bandpass filter
function.

Example 1. (Haar Wavelet) Historically, the Haar wavelet IS the earliest wavelet. It
represents a piecewise constant function given by

05,t5,1/2

1/25,t5,1

otherwise
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I r----
I I
I I

'----'

Figure 1. Haar Wavelet.

The continuous wavelet transform ofx(t) EL2 at the time-scale location (b,a) is defined by the
inner product

< X, I//o,b > = lal"//2 I x(t) I//(a,1[t-b}) dt.

By introducing an appropriate constant c>O (in frequency unit selected by the choice of
I//(t), we have the following mapping from scale a to frequency w

fray = cia = w.

One method to determine this constant c is to take the inverse wavelet transform (lWT) of a
function with a single but unknown frequency and to match this value with scale axis.

The wavelet transforms, < X, lj/o,b >, satisfy the property

A< x, I//o,b >1 2 db = Ilx(t)!2 dt.

Hence, they completely characterize x(t) in the L2 sense. Moreover, x(t) may be
reconstructed by the inverse transform given by

•
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x(t) = C'/II a-
2

<x, 'fIa,b> 'fIa,b da db

27
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where C,/ = 2nII tp(~121c;]-Jd~ < 00. The admissibility condition:1 If/(t) dt=O is implied by
C{I-I < 00 if 'fI(t) has sufficientdecay.

The discrete wavelet transform (DWT) of x(t) E L2(R) is the doubly indexed sequence
{0,k.j,kE Z}, such that

0,k = )il2k x(t) If/(i(t-kli)) dt.

,

Note that rJ.j,k is just the value of the continuous wavelet transform of x(t) at the time-scale
. . . . I

location (kl2', 1/2') or at the time-frequency location (kl2', c2'), where c>O is a constant that
I

depends on the choice of 'fI(t). If the time interval is normalized to the unit interval, the
support of the wavelet becomes [(n-l)T(m-l), nT(m-J)1 so that the wavelet covers the entire
time series. Hence, for a scaling parameter, m, the translation parameter has values n =
1.2,3, ....r-. Thus, for a time series of length N = 2r

, the discrete ~avelet transform (wavelet
coefficients) are '

(dm,n: m E {l,2....,r}, n(m) E {l,2, ...,2m-'j }.

The discrete wavelet transform (DWT) has a corresponding ~ast algorithm for signal
decomposition and· reconstruction, which is efficient for Iboth computation and
implementation on computers and processors. This algorithm is faster than the so-called Fast
Fourier Transform (FFT) used in computing the discrete Fourie~ transform of long time
series. Moreover, the information contained in the DWT is sufficient to determine the signal
uniquely.

3. Wavelet Variance
I

The wavelet variance v2y(2j
) of a stochastic process Y,(t=O, :tl, ...). decomposes var(YJ with

respect to scale 2 = i, that is, '

~ 2 .
var(YJ = LJ V y(2.1).

j=O

This is similar to the propertyof the spectrum of Y, , Rv, that satisfies

[

1 2 I

var(y,) = Ry(w)dw.
112

Let
L.-I

W"A. = Ih;.A.~_;
;=0

I

represent the output obtained from filtering Y, using the wavelet filter ht» of scale 2, where
LA. = (22-1)(L-l)+I, and L is the length of the wavelet filter hi: (Daubechies, 1992). The
wavelet variance for the process Y, at scale 2 is defined by

E(W 2
)

2 (2) = I,A

V y 22
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The wavelet filter hi,;" for scale A can be regarded as an approximation to a bandpass filter
with passband given by 1/4,1 < [w] ~ 1/2,1 (Percival, 1995). Hence, the wavelet variance can
be approximated by

) f/u
Vy- (A) ::::: 2 R; (w )dw.

/4A.

This approximation improvesas the length of the wavelet filter increases.

Suppose that (h Y2, ... ,YN) is a portion of the realization of the process YI' The maximal­
overlap estimator ofthe wavelet variance (Percival, 1995) is defined by

1\ 2 1 N

Vy (A) = --- I w~.A
2ANwA I=L;,

where Nw; =N - LA. + 1. The wavelet-transform estimator (Percival, 1995) is given by

1\ 1 LN !2AJ

Vy*2(A)= " V 2

2AN LJ I.A
VA l=fLA ! 2Al

where

V, A = W21;." and N = l~j _I~l + 1 ., , v, 2,1 12,1

Percival (1995) has shown that the maximal-overlap estimator is more statistically efficient
than the wavelet-transform estimator. In fact, for long-memory processes the asymptotic
relative efficiency of the wavelet-transform estimator with respect to the maximal-overlap
estimator is close to 0.5 for small values of L. Nevertheless, the former is more
computationally efficient since it could be obtained from the discrete wavelet transform of
the process. Moreover, both of these are unbiased and consistent estimators of the wavelet
variance.

The following theorem will be used later to derive a weighted-least-square estimator of the
long-memory parameter based on the maximal-overlap estimator.

Theorem 3.1(Percival, 1995) Let R; be the spectrum of WI,A' If RlV is finitely integrable and

strictly positive almost everywhere, then the maximal-overlap estimator \72 (A) is
asymptotically normally distributed with mean V

2(A) .and large sample variance

.'

•

Aw; /(2A2N
w) ,

LA. =(2A-1)(L-I)+1.

where Nil"; =N - LA. + I,

4. JLong-memory Process

1/2

A"" = fR;(f)df,
-1/2

and

•
An ARMA process {X,} is usually referred to as a short memory process since the
autocorrelation between X, and XI+k decreases rapidly at an exponential rate to zero as k ~
co. that is, p(k) - cr'. k = 1.2.... where C>O and 0<r<1. Brockwell (1987) defines a long­
memory process as a stationary process for which p(k) - Ckd

-
I as k ~ c;v, where C>O and d <

0.5. In this case, the autocorrelations decay to zero slowly at a hyperbolic rate. For our

•
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'"
purpose, if d < 0 and II p(k) I< co. we call {X,/ an intennediate-memory process. It is a

I

long mel1101Y process when 0 < d < 0.5 and
k..:.- I'

The definition of long-range dependence is an asymptotic one. It tells us that the
autocorrelations decrease slowly at a hyperbolic rate as the: lag goes to infinity and not the
size of each autocorrelation. Hence, a time series with arbitrarily small autocorrelations that
tend to zero very slowly may be a long-memory process, Thus, to detect long-range
dependence all autocorrelations must be considered simultaneously, instead of taking them
separately. This requires a lengthy time series for detection :of long-range dependence to be
reliable. Nevertheless, unlike short-memory processes, long-range dependence allows for
more reliable and precise prediction of remote future values of the series.

I

Long-memory processes are often modeled by means of ;the autoregressive fractionally
integrated moving average (ARFIMA) process. (For our purpose, we say that a stochastic
process is stationary if it is covariance stationary.) An AkF'IMA(p,d,q) process {X,/ is a
stationary process such that

(/)(B) (1-B)" x, = e(BJc; (I)

•

•

where [;, is white noise, B is the backshift operator such that BX, = x"I,
(/)(B)=I+f/JIB+...+r/>pJ3" is the autoregressive operator, e(B) =i 1+f)IB+..,+()qIfl is the moving
average operator, and (I-B)" is the fractional difference operator. If dE(O, 0.5), tX,} is long­
memory process (nonsummable autocorrelations). If dE(-Q.5.0). {X,} is an intermediate­
memory process (surnmable -autocorrelations). If d = o. equation (I) defines the usual
ARMA(p,q), which is a short-memory process. If d is an integer (I-B)" becomes the usual
differencing operator in Box-Jenkins models.

Clearly. tX,/ is white noise process if d = P = if = O. The! upper bound d<O.5 is needed,
because for d ~ 0.5, the process is not stationary. However, the ,ase d>O.5 can be reduced to
the case -0.5 <d<O. 5 by taking appropriate integer differencing, For instance, if equation (I)
holds with d = 1.4, then the differenced process (I-B)"11(, is the stationary solution of
equation (I) with d = 0.4 and W, = (1-B)X,. The parameter d determines the long-term
behavior, whereas p, q, and the corresponding parameters ~(B) and If/(B) allow for more
flexible modeling of short-range behavior.

A special case of ARFIMA(p,d,q) is the fractionally, integrated I(d) process or
ARFIMA(O,d,O). Note that an ARFIMA(p,d.q) IS obtained by passing a fractional l(d)

I
process through an ARMA(p,q) filter. that is,

-I •X, = (/)(B) If/(B)X,

where X,* is a fractional I(d). Hence, the long-term behavior: of an ARFIMA(p,d,q) process
may be characterized by its corresponding fractional/(d) process.

I
The spectral density of the ARFIMA(p,d,q) process X, is given by

R( 11 ill'j'J"Rw) = -e - ARMA(11').
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where RARMA(W) is the spectral density of ARMA(p,q) process given by

a"21\f'(e
i
" )1

2

R4//MA(W) = , .
2JfI<D(eill')l- _

The behavior of the spectral density ofXt at the origin is given by

Long-range dependence occurs for 0 < d < ~.

5. Main Results

In this section, we derive the variance of the logarithm of the maximal-overlap estimator of
the wavelet variance. We also present a weighted least square estimator and a test for the
long-memory parameter d.

In the following lemma, we derive the variance of the logarithm of the maximal-overlap
estimator of the wavelet variance.

Lemma 5.1. Let v2(A) be the maximal-overlap estimator of the wavelet variance. If the
spectrum of W";,, RlV , is finitely integrable and strictly positive almost everywhere, and

log]('j2p... ) is uniformly integrable, then

i) IOg2 v2(A)~N(log2 v\A),Aw; log; e/2A2Nil';v4(A»,

ii) var{log2(v 2 p... )}z¢(p/2)/ln2.

where Nw; =N-L;. +1, A".; = fR,~Jnqf. L;. =(2A-1)(L-1)+1, and ¢() IS the

trigamma function.

Proof.

i) Let li 2
( A) be the maximal overlap estimator of the wavelet variance. Since RlV is finitely

integrable and strictly positive almost everywhere, from Theorem 3.1,

'?(A) ~N(v2(A),Aw /2,1,2 N" -, ).
~ .~

Now

f'(x) = log2 e ,
x

exists and nonzero for x>O. Since v 2
( A) »U, then by the Delta Method

log, '?(A)~N(log2 v2(A),A
w; log; e12A2N,,; v4(A».

•

•
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,,,

ii) From Percival( 1995),
,\,\j2 (A.)

v 2
(A. ) ,

is approximately equal in distribution to a chi-square random variable with s degrees of
freedom for largeN, where

s = max{I,4A.2N"'l v" (A.)/ A",; }. i

Since log2(v 2 (I..,)} is uniformly integrable, then for sufficiently large/Iii
Vartlog, VZ (A.)) = Var (log2;,2 (A.) + log-s - log, v2 (A.))

S;'2(A.)
= Var (log2 v2 (A. ) ) = Var (log-X).

where X is a chi-square random variable with s degrees of freedom. The distribution of X is a
member of the exponential family. Its probability density function can.be written in canonical
form as '

f(x) = exp{17In x - A(17)},

where A(q)= In(r(q)2'~, and 17= s/2, Hence,

Vartlnx) = 8
2
A(q) =r(q)r" (17) -~r'(77)]2 = ¢J(17)= ¢(.\/2) ,

877 2 [r(77)]-

where ¢J(.) is the trigarnma function. Therefore,

In certain practical problems that R". is bandlimited and flat over its nominal passband, then
s::::: max{I,N"l /2A. .which is a function of A. (Percival, 1995). '

In the following lemma, we show that the logarithms of the maximal-overlap estimators are
uncorrelated. From Beran (1994) we use the fact that if the covarianc,e!between >0 and >0+k is
y(k), then the corresponding covariance for the mth Hermite polynomial is given by

I

y,1I(k) = cov (Hn,(>0) , HII ,(>0+!J) = II/! y"(k), (2)

Proof.
..

•

Lemma 5.2. Under the assumptions of Theorem 3.1, let ;'2(A.) be the maximal-overlap
estimator of the wavelet variance at scale A. of an ARFIMA(p~d,q) process, then if j
;rk

,,
I

Suppose that we have a time series of length N = 2k that can be consi~ered as a realization of
a portion (fJ, h .... YN) of the ARFI MA(p,d,q) process Y, with mean zero. Hence, E(W,,;) = O.
The maximal-overlap estimator ofthe wavelet variance is given by ,
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where NII'A =N -L). +1,

Hence,
AvA = fR~Jf)df , LA =(2A -I)(L -I) + I.(Percival, 1995).

1,;.1- 1 "12- 1

IcOV(W:,).I' W"A2 )1 = IE(W:,AI W'A) I= II I hnd lhn,A2 R(t - s +m - n) I,
111=0 n==O

where R(k) is the autocovariance function of Y, at lag k. Thus,

1/2 /'11-1 /,,,-1

= f ("" h ei2mm')( "" h ei2Jr(-n)v\ni2Jr(/-s)dF (v)L... III,AI L... II,A2 ,... Y
-1/2 11I=0 11=0

1/2

= I f, H A(-v) II H A(v) II ei2Jr
( H ) IdFy(v)Ji I 2

-1/2

1/2

~ fl HAl ( - v) II H).2 (v) Iar, (v) ,
-1/2

where H is the transfer function of h. From Percival (1995), the wavelet filter hm,A can be
regarded as an approximation to a bandpass filter with passband given by

I I
-<Ivl~-·
4A 2A

.'

Hence, for large LA=(2A-l)(L-I)+I, the supports of H).J.) and

[-I -I J (I I] [-I -I J (1 I]-,- u -,- and -,- u -,- ,respectively. Thus,
2AI 4AI 4AI 2AI 2A2 4A2 4A2 2A2

1/2

ICOV(W"AI,W,,).j ~ fIHAI(-v)IIHA2(v)!dFy(V) =0
-1/2

Since the second Hermite polynomial is H2(x) = x2_I , from Equation(2) we have

Hence,

H). (.) are
2

•
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ICOV(W;fA" W;~Al ) I = O.
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By Lemma 5.1, E(log2lJ2(A)/ < co. Since log-X is a measurable function for X>O, from
Beran( 1994), logdX;) can be written as I

log2l?(A) = G(X;) = I ak Hk(XA ) ,

k=1II k!
where Hk is the kth Hermite polynomial and ak=<G,Hk>= E[G(x)Hdx)). Since <Hi.Hpvk',
<Hi H,> =0 for k#, and from Equation(2), we have ~

for AI :;t: A2. Let AI = i and A2 = f. Therefore, ifj :;t: k

,,

The following theorem gives us the weighted-least-square estimator of the long-memory
parameter d.

I

Theorem 5.3. Let Yr be an ARFIMA(p,d,q) process, where dr=(-J/2,l/2). A wavelet-based
weighted-least-square estimator of the long-memory parameter d is given by

j' r j' I

"u.jy, -("u.v, )("u.j)lLJ././ LJ././LJ./
d = _ j=O j=O j=O 1" " +2 ./ ./

IU)2 _(IU))2
j=O j=O

where v2 (21) is the maximal-overlap estimator of the wavelet variance at scale i, yj=log2

\i2 (2 j
), Vj = {¢(S/2))"I, ¢() is the trigamma function and

__v_i _ .

u i - ~ v .
2.....1
i= 0

Proof.
,

The spectral density of an ARFI MA(p,d,q) process Y, at the origin is gi~en by
I
I

Hence, the wavelet variance of Y, is
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where C = 2JARMA(O) and -Y2 < d < ~.

Now, let

and

where It = i. Clearly, by Lemma 5.1,

E(e} zO and varte) z ¢(s/2)/ln2.

Gonzaga & Bonzo: Wavelet-based
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(Note that p is a function of) for It = i.) By Lemma 5.2, the error terms e.J are approximately
uncorrelated with respect to scale. Hence, we have the regression equation

YJ = (2d-l)} + log-C + e.J
3

, j=O.J.2.3...J*.
Let

VJ = {¢(s/2)r', and u, =~
LVi
i=O .

Performing a weighted least squares fit between YJ and, (Bickel and Doksurn, 1977) with
weights Uj yields the following estimator of the long-memory parameter d

Q.E.D. •

From the maximal-overlap estimator, the upper limit is N and the lower limit is

LA = (21t-l)(L-l)+1,

which is an increasing function of It. Hence, for It = i. the maximum possible value of j in
the summation is the largest integer satisfyingN - L;, ?:: O.

This implies that

It < N +L-2 L>l
- 2L -2' .

11
- (N + L- 2 )-11Thus, the choice of)* should not exceed _log 2 2L _ 2 _.

Now, let

3 The Ej at least approximately satisfy E(Ej ) =°and COV(E;. Ej) = 0, 1~i<j~k.(Bickel and Doksum(1977),
p.95)

'.

•
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r
(I) = 1I.. j - u." v.iI } L.. }

/=0

and

B = fUll -(fUlj J2
1=0 i=O

Hence,
i*

LaiYi
A I
d =- j=O + I

2 B

r r r
Note that I Uj =1, then I aj =0 and IajJ =B. The variance could be written as

j=D j=O j=D i

35
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By Lemma 5.2, COV(Yi,Y) = 0 for i'7/ Hence,

Var d = (2Br
2 {fa/ var(Yj)},

J=O

By Lemma 5.1, the large sample variance ofYi is given by

A. log; e
Var(lo ,v2 (.-t)) = ", 2

g- 2.-t2N
w, v4(.-t)

where .-t = i. Hence, vard can be made arbitrarily small by small choice ofj* for large N.
Moreover, for large N, Yj = (2d-1)j + !og2e + Cj satisfies the properties of a generalized

A I

linear model. Hence, the resulting estimator d must be asymptotically unbiased for d.

However, consistency of dcan only be assured if vard = 0(1). Clearly, this is satisfied by
choosing a fixed and relatively smallj*. Thus, the choice ofj* provides: a trade-off between
bias and variance. '

The preceding weighted-least-square estimator allows us to estimate the long-memory
parameter d of an ARFIMA(p,d,q) process without the knowledge of'p and q. It could be
applied to any process that behaves as ARFIMA(p,d,q) at the pole. It may be expressed
directly in terms of the wavelet-transform estimator of the wavelet variance by replacing the

I
corresponding maximal-overlap estimator. The wavelet-transform estimator is more
computationally efficient but less statistically efficient than the maximal-overlap estimator
(Percival, 1995). I

The following theorem shows that the weighted-least-square estimator based on the maximal­
overlap estimator is more statistically efficient that the one based on the wavelet-transform
estimator.

A A '

Theorem 5.4 Let d IV and d v be the weighted-least-square estimators ?f the long-memory
parameter d based on maximal-overlap and wavelet-transform estimators of the wavelet
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variance, respectively. Under the assumptions of Theorem 3.1, the asymptotic relative
1\ 1\

efficiency of d w with respect to d v satisfies
1\ 1\

ARE(d w, d «) < Cj* < J.

where j * ~ llOg2 ( N
2:
~ ;

2
)Jand Cj* is an increasing function of j *.

Proof.

From Lemma 5.1,Yj is asymptotically normal. From Lemma 5.2, the Yj are independent. Now,
1\

we can write the estimator d IV in the form
j'

CU;i - v,cI u;.i»
;=0

j' r
2Iu;/ - 2cIu;.j)2

j=O ;=0

I
+­

2'

•

Hence, we have

dw~N(d, vardw}

where
r
LajYj

t r d 1=0 1var IV = var ;.....::.--+-
28 2

•r
where La;} =B. By Lemma 5.2, COV(Yi,Y/= 0 for i~j. Hence,

j=O

var d w~ (lET' {t,a/ varlYi+
Thus,

var d w=

j=O ,1,2Nv, v4 (A.)

where A. = i. From Percival (1995)

Similarly,

dv~N(d, vardv )

Thus, by Theorem 5.2.1 (Lehmann (1983), p.345), we obtain

i' a 2 AL } w,
1\ 1\ '_ A? N v4 (A. )

ARE(d ' d ) = }-o w,w, v .• 2
~ aAv,
~ .1 A

•
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Aw
-'- =C'< 1
2A J'

VA

where Cj is an increasing function ofj < 00. and A. = oj . Hence,
'0 22 At o;c;v;.

1\ 1\ _ 1=0A.22N vAV
4(A.)

ARE(dw.d v ) - '0 2 't o;Av,

j=0A.
2Nv, v

4(A.)

Thus, for

.*::; llo (N +L-2)j
J g2 2L-2

we have
1\ 1\

ARE(d w, d -) < CjO < 1. QED.

In the following theorem, we derive an asymptotically uniformly most powerful test for
testing Hi; d 50 versus HI: d > O. Note that if d< 0 the process :has intermediate memory,
if d = 0 the process has short memory (ARMA(p,q)), and if dE(O.1/2) the process has long
memory.

I

{

jO a 2 A }
(2Br2 (log; e) .v 2' 1.1

4
~l; ,

- ~ 2 .1+ V (2.1)N.1-0 Wl ,

d>k

otherwise

where.z = z; ~Var d. fajj =B, and var J
j=O

Theorem 5.5. Let Yt be a ARFIMA(p,d,q) process with dE(-O.5,q.5) under the assumptions
of Lemma 3.1. An asymptotically uniformly most powerful test for testing Hi: dSO versus
HI: d>O
is given by

¢(x) ~ {~•

Proof.

From the proof ofTheorem 5.4, we have

d~N(d,Vard}
where

{ , }• 10 a, -Aw
var d = (2Br 2 (log; e) L 2j+I.l4 /' .

;=0 2 v (2 )Nw. 2;

Thus,

[
d-d JPJ ~>Za =a,

VVar d I
I

where Zd is the I-a quantile ofthe standard normal distribution. If d=O we have

Po ( d > Za ~Var d) =a . I

Hence, an asymptotically uniformly most powerful test for testing: Ho: dSO versus HI: d>O is
given by

•
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d>k

otherwise
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•

where k = z; ~Var J ,

r
L a;i =B .QED.
;=0

~

Var d
{

; * a 2 A }
(2BX2 (log; e) " 2' I /4 W'j ,and

~2 /+ v (2/)N
/-0 W,;

The preceding test may be expressed directly in terms of the wavelet-transform estimator of
the wavelet variance, which is more computationally efficient but less statistically efficient
than the maximal-overlapestimator.

6. Applications

We apply the wavelet-transform estimator and maximal-overlap estimator of the wavelet
variance in estimating and testing for the long memory parameter of the Nile river data ­
yearly minimum water levels of the Nile for the years 622-1133 A.D. measured at the Roda
Gauge near Cairo. This is a well-known example of a long-memory process, which is usually
used to assess the performance of estimatorsof the long-memory parameter.

We first compute the weighted-least-square estimator of d using the wavelet-transform
estimator of the wavelet variance, which could be obtained directly from the discrete wavelet
transform of the process. Using WAVELAB 0.701, a library of MATLAB routines for
wavelet analysis, we compute the wavelet coefficients at different scales after subtracting the
mean. The corresponding weights are computed using the polygamma function of
MATHEMATICA. Hence, the weighted-least-square estimator of the long-memory
parameterbased on the wavelet-transform estimatorof the wavelet variance for N=29 is

1\

d v = 0.322786,

which shows that the Nile river data, indeed, represents a long-memory process.

We also compute the weighted-least-square estimator of d using the maximal-overlap
estimator of the wavelet variance. We use the fact that since

Lrl

W"A. = Lhi.A.1',-; ,
;=0

the spectral density of Wr,it satisfies

RW(A)=1 H(A) 12 Ry(A).

Hence, given a realization of the process Y, and the transfer function H(A) of the wavelet
filters, the values of W"A. in the definition of maximal-overlap estimator may be computed by
taking the inverse transform of Rw. For N = 29

, the weighted-least-square estimator of the
long-memory parameter d based on the maximal-overlap estimatorof the wavelet variance is

1\

d w = 0.310858,

which shows that the Nile river data, indeed, represents a long-memory process.

•

•

•

•
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N=

I
N = 29

~ N = 28
,

dv (wavelet transform) 0.322786 '0.254552
d; (maximal overlap) 0.310858 : 0.29227,

Clearly, the value of d for N = 28 based on the maximal-~,verlap estimator is much closer to
A I

its value at N=29 than d based on the wavelet-transform: estimator. This demonstrates the
asymptotic relative efficiency of the two estimators in Theorem 5.4.

A ,

We summarize the values of d for the two estimators of the wavelet variance, and for
29 and N = 28 as follows:

For the testing procedure in Theorem 5.5, the value of k fo:r a =0.05 is 0.239589. Thus, for
both estimates of d, we reject the null hypothesis and conclude that the Nile data represents a

I
long-memory process. "

I

7. Concluding Remarks I

The weighted-least-square estimator based on the maximal-?verlap estimator of the wavelet
variance is shown to be more statistically efficient, but less computationally efficient, than

I

the one based on the wavelet-transform estimator. An algorithm may be designed to compute
the maximal-overlap estimator without applying spectral analysis. Moreover, simulations of
long-memory processes may implemented to fully assess the', efficiency of the estimator and
test in making inferences about the long-memory parameter. :

•

I

The preceding procedures have the advantage of being abi,e to make inferences about d
without the knowledge of p and q. However, just like: other least-square estimation
procedures on d, we just exploited the simple form of the pole of the spectral density at the
origin. They do not tell us about the short-term properties of the process.
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